
Accessing Structured Grid Data with Rind Planes
Author: Stephen Guzik, Colorado State University
Contact: Stephen.Guzik@colostate.edu

Revision 05/14/15 includes changes in the following sections, based on comments from the CGNS
steering committee:

• Section 2 Compatibility

• Section 2.1 Support for ADF

• Section 4 Extensions

Changes are shown in italics. Some experimental code is also available in the git repository. If
you have cloned the repository using git clone https://github.com/CGNS/CGNS.git, then
the branch can be viewed by issuing
cd CGNS
git checkout Rind_Plane_Indexing

To switch back to the master branch, type git checkout master. In the branch, two parallel
test codes are available in UserGuidCode/C_code_parallel.

This document only concerns structured grid data with rind planes. Applications that read or
write data using unstructured grids or structured grids without rind planes should not be affected
by the observed issues or proposed changes.

1 Summary
The SIDS mentions that physical data (the core grid information) in a zone begins at index [1, 1, 1].
For grid coordinates, the SIDS states1:

Core vertices in a zone are assumed to begin at [1, 1, 1] (for a structured zone in 3-D)
and end at VertexSize. If Rind is present, it will provide information on the number
of "rind" points in addition to the core points that are contained in the DataArray_t
structures.

For the flow solution, the SIDS does not say anything specific about where the core grid starts.2

When discussing Rind_t3, the SIDS specifically states that the range of indices for the grid is

i :(1 − a, II + b)
j :(1 − c , JJ + d)
k :(1 − e, KK + f ) .

This is illustrated graphically at http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/
sids/conv.html#rind_struct.

1http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/gridflow.html#GridCoordinates
2http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/gridflow.html#FlowSolution
3http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/build.html#Rind

1

http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/conv.html#rind_struct
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/conv.html#rind_struct
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/gridflow.html#GridCoordinates
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/gridflow.html#FlowSolution
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/build.html#Rind


i

j

(1, 1)

(2, 2)

(ni+1, n j+1)

(ni+2, n j+2)

(a) Indexing in CGNS version 3.2.1 (MLL).
i

j

(0, 0)

(1, 1)

(ni , n j)

(ni+1, n j+1)

(b) Indexing with proposed changes (SIDS).

Figure 1 Current and proposed indexing for reading/writing to CGNS files. Rind planes are shown
in gray, core grid is shown in white. The SIDS describes the indexing shown in (b) while the MLL
(version 3.2.1) implements the indexing shown in (a).

1.1 Problem
In structured grids, when rind (or ghost) cells are present, reading data at rmin = [1, 1, 1] yields in-
formation in the rind planes, as illustrated in Fig. 1a. This behavior is different from that suggested
by the SIDS and illustrated in Fig. 1b. When reading or writing a CGNS file, it is important to
be able to include or omit rind plane information as required. The fix to the observed discrepancy
between the MLL and SIDS and a proposed extension address this concern.

1.2 Proposed Changes
When reading grid or solution information, index [1, 1, 1] should always denote the start of core
grid information. Therefore, the range rmin = [1, 1, 1] to rmax = [ni , n j , nk] can always be
used to read the full core-grid information, where [ni , n j , nk] = [NCellI, NCellJ, NCellK] or
[ni , n j , nk] = [NVertexI, NVertexJ, NVertexK]. To read rind plane information, in addition to
core-grid information, one needs to provide the offset from the core-grid. E.g., to read one layer
of rind planes, use rmin = [0, 0, 0] and rmax = [ni + 1, n j + 1, nk + 1]. This approach provides a
consistent interface to accessing core-grid data, in contrast to the current implementation (version
3.2.1) where one first has to probe the sizes of rind-plane information to find the offsets required
to read only core-grid information. This modification is considered a bug fix since the MLL does
not produce the behavior described in the SIDS.

A second proposed modification (an extension to the MLL) allows for reading data into an array
in memory that is not the same size as the data being read. For example, one may have an array in
memory that is sized to hold both the core grid and rind planes. Into this array, one may wish to read
only core-grid information from the CGNS file. There is currently no method in the MLL that sup-
ports this need. Yet it is easily achieved with HDF5 hyperslabs and only small changes are required
to the CGNS library. Additional routines are proposed, e.g., cg_field_read_to_shaped_array
(or alternatively cg_field_read_to_array or cg_field_general_read) and cg_field_

2



partial_write_from_shaped_array (or alternatively cg_field_partial_write_from_
array or cg_field_general_write). In addition to rmin and rmax which describe the hyper-
slab to read from the file, the user must specify mem_numdim, mem_dim, mem_rmin, mem_rmax,
to fully specify the shape of the hyperslab in memory. The only restriction is that the number of
points in both hyperslabs (file and memory) must be the same4. However, a second restriction
which is imposed, but can be removed, is that the number of dimensions in memory must be less
than or equal to the number of dimensions in the file.

2 Compatibility
Any code reading information with rind planes will be broken by the proposed changes. It is
possible to modify the library so that when the user asks for the full range of data, irrespective of
the actual indices, the full range of data is correctly returned. E.g., with one rind plane, rmin =

[1, 1, 1] to rmax = [ni + 2, n j + 2, nk + 2] would work the same as rmin = [0, 0, 0] to rmax =

[ni +1, n j +1, nk +1] A disadvantage of allowing this behavior is that it does not enforce consistent
indexing and can lead to confusion. Any code not using rind planes (where rind planes are by
default set to zero) should not be affected.

• The decision of the steering committee is to return the full range of data when rmin to rmax
spans the full range of data, irrespective of the actual value of the indices. This supports
most users who use rind cells.

• The user will be able to set a flag to force the old behavior.

• The proposed changes can be made to work with parallel CGNS by adding new interfaces
similar to those in cgnslib.c.

2.1 Support for ADF
The proposed changes are easily supported with the HDF5 database since hyperslabs are available.
ADF has not been investigated but is assumed to work as well since the routines in cgns_io.c
do not need to be modified to fix the discrepancy. The extension is only fully supported in HDF5
because it relies on in-situ type conversion provided by the HDF5 library.

• The extension will only be supported when using HDF5 as the backend file system. The MLL
docs will be annotated to include this information and the code will produce an error if the
extension is used with ADF.

2.2 Support for Fortran
Fortran user code has not yet been tested. The library changes proposed herein are expected to be
compatible with Fortran user code.

4See http://www.hdfgroup.org/HDF5/doc/UG/UG_frame04ProgModel.html for more information on hy-
perslabs in HDF5.

3

http://www.hdfgroup.org/HDF5/doc/UG/UG_frame04ProgModel.html


3 Changes

3.1 SIDS
Few changes are required to the SIDS. At http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_
current/sids/gridflow.html#GridCoordinates, the comment that “Core vertices in a zone
are assumed to begin at [1, 1, 1] (for a structured zone in 3-D) . . .” should be strengthened to state
the following:

Core vertices in a zone begin at [1, 1, 1] (for a structured zone in 3-D) and end at
VertexSize. If Rind is present, it will provide information on the number of "rind"
points in addition to the core points that are contained in the DataArray_t structures.
Indices in DataArray_t structures have the range [1− a, 1− c , 1− e] to [II+ b, JJ+

d, KK + f ] where VertexSize = [II, JJ, . . .] and RindPlanes = [a, b, . . .] (see the
Rind_t structure for the definition of RindPlanes).

The note in parenthesis can possible be removed from the subsequent section titled “FUNCTION
DataSize[]:” if deemed redundant.

A similar comment should be added to http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_
current/sids/gridflow.html#FlowSolution where VertexSize is replaced by GridSize
(or alternatively DataSize) which is dependent on GridLocation.

3.2 Library
Only changes to FlowSolution_t node are discussed. The changes to the GridCoordinates_t
node are identical or at least very similar.

Read routines take rmin and rmax as arguments and write them to arrays s_start and s_end.
The required change is to simply adjust the value when writing to s_start and s_end. For
cg_field_read:

4134 s_start[n] = rmin[n] + sol->rind_planes[2*n];
4135 s_end[n] = rmax[n] + sol->rind_planes[2*n];

Line numbers refer to the a patched library. There are other changes related to checking the input
arguments.

Routine cg_field_write returns the entire array and needs no modifications. Routine
cg_field_partial_write takes rmin and rmax as arguments, similar to read, and the changes
are identical:

4533 s_start[n] = rmin[n] + sol->rind_planes[2*n];
4534 s_end[n] = rmax[n] + sol->rind_planes[2*n];

Input checking is modified and the routine is restructured to specify the shape of the array in
file space and the shape in memory space in advance. These shapes can then be used whether a
DataArray_t node is overwritten or a new one is created. Some of the restructuring makes more
sense when considering the extension proposed in Section 4 where routine cgi_new_node_
partial is modified to be more general.

4

http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/gridflow.html#GridCoordinates
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/gridflow.html#GridCoordinates
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/gridflow.html#FlowSolution
http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/gridflow.html#FlowSolution


i

j

0
6

12

18
24

30

1

7

13

19
25
31

2

8
14

20
26
32

3

9
15
21

27

33

4

10
16
22

28
34

5
11

17

23

29
35

(a) Layout in file space (CGNS).

i

j

7

13

19
25

8
14

20
26

9
15
21

27

10
16
22

28

(b) Layout of core-grid data in
contiguous memory space.

i

j

7

13

19
25

8
14

20
26

9
15
21

27

10
16
22

28

(c) Layout of core-grid data in
non-contiguous memory space.

Figure 2 Layouts of data in file (CGNS) and memory (user code) space. To read only core-grid data,
the memory space must be contiguous as shown in (b). The extension supports reading and writing to
a general layout in memory space as shown in (c). In the illustrated example, the user can then allocate
an array with 2 layers of rind planes and read only core-grid data.

3.3 UserGuideCode
Code in the user guide will be updated to also show the writing of rind planes for grid coordinates
in a new file, write_gridrind_str.c. File read_flowcentrind_str.c will be modified to
correct indices for reading full range for density, and to illustrate reading only core-grid data for
pressure.

4 Extensions
Mechanisms exist in the MLL to read or write to only part of the file-space array, and the changes
outlined in Section 3 make it more intuitive to read/write the core-grid data. When using rind
planes, users will likely need a similar capability for memory-space arrays. E.g., they may allo-
cate memory for core grid and rind planes but wish to read only core-grid points from the CGNS
file (see Fig. 2c). There is no mechanism in the MLL to allow this. Users must instead allocate
contiguous memory, read into that memory (as shown in Fig. 2b), and then manually copy into
the exact shape they require for their algorithm. The proposed extension is for two new interfaces,
cg_field_read_to_shaped_array and cg_field_partial_write_from_shaped_array, in
the MLL to permit reading/writing to an arbitrary array shape in memory space. As the above
names are quite long, alternatives include cg_field_read_to_array or cg_field_general_
read and similar for writing. New interfaces will also be included for specifying structured
grid coordinates. This document focuses on the FlowSolution_t node. The changes to the
GridCoordinates_t node are very similar.

• The library will use names such as cg_field_general_read since they are less technical.

5



4.1 Changes to Library
Changes are described first for low-level library code and then working towards the high-level
MLL interface. Full details of the changes can be viewed in the patch file.

4.1.1 ADFH.c

The interface to routine ADFH_Read_Data was modified to add the parameter const char*
m_data_type which is the ADF data type for the memory read. If this parameter is set to NULL,
the data type is the same as that in the file (previous behavior). If this parameter is set to an ADF
data type, HDF5 will do the conversion. This change allows for the HDF5 library to perform
type conversion instead of the CGNS library (and avoids allocating the extra memory required by
cgi_convert_data).

4.1.2 cgns_io.c

The IO routines already support an array in memory with a different shape from that in the file.
Function parameters prefixed with s_ describe the shape in the file and parameters prefixed with
m_ describe the shape in memory. To allow for type conversion by the HDF5 library, a new routine
named cgio_read_data_type is created. This routine is identical to cgio_read_data except
the interface includes an additional parameter specifying the ADF data type for memory space.
This data type is propagated to ADFH_Read_Data in ADFH.c. An important difference is that the
ADF file type is not supported. A user attempting type conversion when reading to a shaped array
and using the ADF database will encounter a CGIO_ERR_NOT_HDF5 error.

4.1.3 cgns_internals.c

Routine cgi_new_node_partial is modified so that the shape of memory is specified through
parameters rather than hard-coded. This means that the memory shape must be specified or deter-
mined in the caller in cgnslib.c.

4.1.4 cgnslib.c

To accommodate the changes in cgns_internals.c, the memory shape is specified in
cg_field_partial_write and passed as arguments to cgi_new_node_partial. Note that read
routines do not require a similar change as they directly call functions in cgns_io.c. Routines
cg_field_read_to_shaped_array and cg_field_partial_write_from_shaped_array are
implemented that allow the user to specify the shape of memory from their applications.

4.1.5 Remarks

There is now a lot of duplicate code in cgnslib.c which will make maintenance more difficult.
The code should be structured so that only a general path, e.g. cg_field_partial_write_from_
shaped_array, is maintained. Less general interfaces, e.g., cg_field_write and cg_field_
partial_write, will supply the additional parameters and call the general path.

6



5 Observations
1. Inconsistent use of 3, 12, or CGIO_MAX_DIMENSIONS when declaring indices for structured

arrays.

7


	Summary
	Problem
	Proposed Changes

	Compatibility
	Support for ADF
	Support for Fortran

	Changes
	SIDS
	Library
	UserGuideCode

	Extensions
	Changes to Library
	ADFH.c
	cgns_io.c
	cgns_internals.c
	cgnslib.c
	Remarks


	Observations

