
To: The CGNS Steering Committee

Subject: Comment on Proposal for the support of hierarchical data structures in the
CGNS unstructured meshes format. by M. Delanaye, E. Robin, and A. Patel.
NUMECA Int. July 2000

Re: M. Aftosmis, NASA Ames Research Center, Moffett Field, CA 94404.

Date: November 2000

The proposal titled "Proposal for the support of hierarchical data structures in the CGNS
unstructured meshes format" by M. Delanaye, E. Robin, and A. Patel of NUMECA Inc.
states that it proposes modification of the CGNS unstructured mesh format to include
hierarchical information. Direct hierarchical references are currently absent from the
CGNS standard and this proposal suggests a modification to the standard to include such
information. This is clearly an important addition and strategies for including this
information should be reviewed by the steering committee. Unfortunately, about half of
the proposal focuses not on hierarchical information, but upon proposed extensions to the
basic storage of unstructured mesh connectivity. We show that if adopted, these changes
would result in a 2 to 3.5 fold increase in storage for mesh connectivity. These
modifications are not only unnecessary and difficult to support, but may have serious
consequences detrimental to the success of the CGNS unstructured format. This letter
offers comments upon both aspects of the NUMECA proposal, hierarchical storage and
storage of unstructured element connectivity.

To avoid the appearance of any conflict of interest, members of the steering committee
should understand clearly thatnoneof the data structures discussed or proposed in this
letter are used in the author’s own research or codes.

Hierarchical Elements:

The proposal suggests adding an optional data array of type integer to theElements_t
data structure with two integers for each element. The first of these integers would be the
index of the "first" child while the second points to a sibling element. This arrangement
is a bi−directional structure and allows any cell to quickly point to both its children and
its siblings. Finding all children of a given parent requires only looking to see who the
first child is, and then traversing the linked list from sibling−to−sibling, until the list
terminator (−1) is encountered.

Initially this structure appears both compact and flexible. For this reason, such structures
are common within a running program where redundancy can often provide advantages
in execution speed. Nevertheless, two aspects of this structure are unattractive in an
archival storage format.

1. Non−uniqueness − Which child is pointed to directly by the parent? Why is this child preferred? In
fig. 1 and table 1. of the proposal, parent cellA points only to childB and whileB, C, D, andE, are
all children ofA, child E has no sibling pointer, while all other children ofA have one. Clearly there
is no obvious preference for one sibling over another, and we are just traversing a linked list, built in
some order by some previous application program. This asymmetry and non−uniqueness of the format
has permitted theOriginator (the application which originally created the data) to an imprint of
decisions madewithin that application to affect all downstreamClients (in this context, downstream
applications which use this dataset).

1

2. Redundancy − The non−uniqueness pointed to in the preceding paragraph is indicative of redundancy
within the data structure. In table 1 (of the proposal) this redundancy also manifests itself by the large
number of "−1" flags that appear. Even in this simple example, only 6 of the allocated 14 storage
locations point to something other than this list terminator (−1). Over half the storage allocated (paid
for in disk space and file access time) is wasted. In fact, this waste ismandatedby the format.
Following the rules set down in the original proposal, a parent points to its first child and all cells may
point to one sibling. Only parents will have a non−flag "child" pointer. Since the physical cells
covering the domain in any computation are invariably "children" and not "parents" every fine cell in
the domain willalwayswaste this storage location. Additionally since the final sibling on the linked
list will never point to additional siblings, at least one child of every parent will waste his sibling
pointer.

Both of these unsavory features are a direct result of redundancy within the proposed
data structure. Such redundancy has two other major consequences. Most obviously it
costs the industry money as redundant information is stored in files across the entire
industry. Perhaps less obviously, this information takes more time to retrieve, and as
processor speeds continue to out−pace disk I/O, retrieval will take progressively more
time (relative to processor speed). In addition, redundancy permits topological conflicts
to be buried within datasets. If one can find out information via multiple methods, then
self−inconsistent topological relationships may lie inadvertently buried within datasets.
While within an executing program redundant data structures can mask latency and speed
execution, overly redundant archival storage incurs costs in both storage media and
access time (as well as network bandwidth).

A Counter Proposal

A simple modification to the proposed format avoids the consequences of the preceding
paragraphs, while simultaneously reducing the required storage by half. Under this
system every child simply points to its parent. Parents who are not children themselves
point to a list terminator (−1 in the original proposal). ThehierarchicalData array
would only contain only one integer (not two) and the example in table 1 (of the original
proposal) would contain only one list terminator. The fact that this "bottom−up" scheme
requires exactly half the storage of that originally proposed is no accident, and the
presence of such a scheme was alluded to by the fact that less than ½ of the locations in
table 1 (of the proposal) are actually used.

1. Unique/Symmetric − all children with the same parent are treated identically, and point uniquely to
the same entity. This makes it more difficult for the originator to artificially bias the data for
downstream clients.

2. Minimal − requires ½ the storage of the scheme originally proposed, and since it does not store
redundant information, it encourages storage of self−consistent datasets.

3. Flexible − The linked−list storage scheme in the original proposal can be recovered by a single sweep
over the cells. In this sweep, each child puts its index at the tail of the linked−list of it’s parent. On
many systems this will be as fast, or faster than actually reading the redundant second integer of the
original scheme from disk. Moreover as processor speeds increase, this one−time−cost decreases with
processor speed and live memory bandwidth − which historically increase an order−of−magnitude
faster than gains in bandwidth to disk.

Table 1: Illustration of a new hierarchicalData array for cells shown in Fig.1 of the original proposal.

Cell A B C D E F G

Parent −1 A A A A D G

2

Finally, it is worth repeating the third point listed above. Hierarchical data in the form
requested by the original NUMECA proposal can be obtained directly with a single pass
down the cell list. There are many applications that will use custom data structures to
traverse hierarchical data, and it is impossible for the standard to anticipate the
implementations of all such clients. The format discussed here makes it possible to
construct both list−based and tree−based hierarchical information with simple constant−
time (per−cell) algorithms. Moreover it does not saddle downstream clients of a dataset
with decisions made internally in the originating application.

Storage of Unstructured Element Connectivity

It can be argued that the preceding section discusses removal of a single redundant
integer from the proposed format for storing hierarchical data. While this is a seemingly
trivial change, it is recommended on the principle that the archival standard format
should store minimal and generic information in a form that makes it possible for clients
to inexpensively build their own custom data structures. The second half of the
NUMECA proposal concerns a major change in the way that element connectivity is
stored in a way that dramatically disregards this principle. If adopted, this scheme will
incur massive additional storage costs, and penalize client applications with increasingly
slow I/O and increased development costs as developers of client applications scramble
to code for a whole host of potential storage schemes. The loss of standardization that
will result will also unduly burden the CGNS development team since many internal
functions with duplicate functionally will need to be written to support the plethora of
possible options.

Currently the CGNS unstructured format supports Element−>node connectivity.
Paragraph 2 of the proposal states that in the opinion of the authors, "this is too
restrictive" and proposes an alternative based upon a dimensional cascade of
element−>face, face−>edge, edge−>node. Contrary to the proposal’s claim that the
current format is "too restrictive", it can easily and quickly provide precisely the
information requested by the NUMECA proposal using a simple 2 pass algorithm that
runs with a constant time bound (per−cell). The algorithm is standard for constructing
face and edge−lists from cell−based element storage.

1. (1 cell sweep) Each cell puts its own index on linked−lists of each of its node.

2. (1 node sweep) Each node traverses the cells on its own linked list and matches cells to create
cell−>face, face−>edge, and edge−>node connectivity.

Since the work done at each cell in step 1, or each node in step 2 does not depend upon
the total number of cells in the mesh, the work per−cell (or per−node) is clearly constant.

If a particular client chooses not to re−compute this connectivity, such clients always
have the option of storing additional information separately, however such client
customizations should not be forced upon all users of the CGNS standard. In this way,
idiosyncrasies of a particular client do not get imprinted into all datasets for which it is
the originator.

Including the proposed modifications would have a serious impact upon third−party
developers of CGNS compliant software. Such developers would not know what to
expect in the files and would therefore have no alternative but to supportall possible

3

options in order to remain CGNS compliant. This dramatically increases development
cost and inherently delays the appearance of such applications in the marketplace. Since
any client who wishes to claim CGNS compliance would have to supportall possible
formats, this would have the effect of penalizing the entire industry with increased
development costs or risk loss−of−standardization − negating the purpose of CGNS.

Finally, let us examine the storage requirements for the data structures in the proposal.
We have already established that within a running application, it is common practice to
use topologically consistent but redundant data to mask latency or to speed execution,
and therefore it is not the intent of this section to critique various data structures, only to
establish the storage requirements for archival purposes.

Consider an asymptotically large (no boundaries) data set withN nodes connected either
with pure hexahedral or pure tetrahedral tessellations. These represent bounding cases
with mixed element or hybrid meshes falling between these extrema.

Currently supported: Cell−>Node Connectivity (N nodes)
Pure Hex mesh Pure Tet mesh

Total No. of Cells N 6N
 Total Connectivity (N cells)(8 nodes/cell) = 8N (6N cells)(4 nodes/cell) = 24N

Proposed by NUMECA: Cell−>Face, Face−>Edge, Edge−>Node Connectivity (N nodes)
Pure Hex mesh Pure Tet mesh

Total No. of Cells N 6N
No. of faces/cell 6 4

No. of faces in mesh 4N 12N
No. of edges/face 4 3

No. of edges in mesh 3N 7N
Cell−>face storage (6 faces/cell)(N cells) = 6N (4 faces/cell)(6N cells) = 24N

Face−>edge storage (4 edges/face)(4N faces) = 16N (3 edges/face)(4N faces) = 12N
Edge−>node storage (2 nodes/edge)(3N edges) = 6N (2 nodes/edge)(7N edges) = 14N
 Total Connectivity 6N + 16N + 6N = 28N 24N + 12N + 14N = 50N

For either of the cell types considered its obvious that the scheme in the NUMECA
proposal incurs an excessive penalty for connectivity storage. For pure hexahedral
meshes the proposed scheme stores 3.5 times more data than the existing structure while
for tetrahedral meshes it stores 2.08 times more data. Mixed meshes of pyramids, prisms,
etc. will fall between these extremes.

In light of this simple analysis and when one considers that the proposed data structures
can be created on−the−fly in constant time (per−cell) from those already supported by
the CGNS unstructured format, there seems to be little motivation to adopt this proposed
modification. In fact, all of the earlier arguments about processor speed and memory
bandwidth increasing far faster than disk bandwidth take on new urgency. Clients that do
not wish to re−compute their custom internal data structures should be encouraged to
keep proprietary files outside of the standard. However, with such massive storage
penalties associated with schemes such as these, it is likely that in the long run, re−
computation will be substantially faster than storage on ever−more−distant disk. As the
archival standard, CGNS should continue to strive to consume minimal resources while
making it possible for clients to inexpensively recover their proprietary formats.

4

